Inside the Lamborghini lab that’s reinventing carbon fiber

Lamborghini handles every step of the production process in-house; its engineers call this a building block approach. To find out how it’s done, we flew to the company’s headquarters in Sant’Agata Bolognese, Italy, put on a uniform, and spent a day shadowing workers.

The Seattle connection
Lamborghini began dabbling in carbon fiber in 1982. At the time, its cars were largely built using various types of sheet metal, and the composites department was just a tiny fragment of the brand’s research and development effort.

Lamborghini’s composites department built an experimental Countach prototype with a full carbon fiber monocoque a year after it was founded.

By chance, some of the engineers who founded the department were Italians that had previously worked for Boeing in Seattle, Washington. They diligently applied the lessons learned while developing the 767 airliner to the world of high-end, high-performance cars. The team was made up of just five people, yet it managed to build an experimental, fully-functional Countach prototype with a full carbon fiber monocoque only a year after the department was founded.

The composites department grew in size during the 1980s and the 1990s after executives accurately predicted carbon fiber was the future of supercars. By 1998, all of the Diablo GT’s exterior body panels were made from the lightweight material. In 2011, the Aventador debuted an ultra-light carbon fiber body.

Going straight to the source
As we step inside the carbon fiber development center, we’re greeted not by a technician with oil-stained hands but by a researcher in a black lab coat. The first step of the process is to test samples (called coupons) to learn how various types of carbon fiber withstand pressure.

The small, rectangular coupons are bent until they snap, crushed by hundreds of pounds, and subjected to extreme temperatures on both ends of the thermometer. They’re examined under a powerful microscope to identify even the tiniest imperfections that can later cause much bigger issues. Nothing is left to chance in the research lab.

The valuable data gathered during these tests is used to manufacture elements, assemblies, components, and, ultimately, a full car. Attilio Masini, Lamborghini’s head of materials technology and manufacturing engineering, tells us this bottom-up approach came directly from Boeing.

He explains it’s extremely important for Lamborghini to have full control over the entire production process. No step is outsourced, but engineers and researchers frequently exchange ideas with Boeing and the University of Washington.  The collaboration gives Lamborghini access to advanced software that allows it to calculate how a specific carbon fiber component will fare in an accident without needing to stuff an expensive prototype into a wall.

Rolls of carbon fiber are stored in a massive walk-in freezer reminiscent of the cold room you’d find in a butcher’s shop.

Members of the R&D department can tell ahead of time which parts of, say, an Aventador body will absorb impact. This greatly reduces the time it takes to get a car certified for road use.

From the freezer to the oven
Production of carbon fiber components takes place deep inside the growing Lamborghini complex. It’s not what you imagine when you think of a car factory. It’s well lit, the floors are clean enough to eat off of, and the entire process is done by hand so the facility is almost as quiet as a library.

To experience the process first hand, we’re instructed to make a small part with ridges and grooves that R&D cuts up and uses for various tests. Having never played with carbon fiber before, we were surprised by how much time it takes to churn out a relatively simple part.

Rolls of carbon fiber are stored in a massive walk-in freezer reminiscent of the cold room you’d find in a butcher’s shop. Once they’ve thawed, they’re cut to shape with a knife, because using a laser would create too much heat. With four small sheets of the material in hand, we set out to make our first part.

The sheets must be carefully placed in a mold one layer at a time, and pressed down using a plastic tool to ensure a tight fit. The mold is placed in a vacuum bag to remove the air that gets trapped in between the layers. It sounds relatively simple when you read about it, but making the wave-shaped part took us about 45 minutes. It’s then baked in a large oven for about six hours.

Carbon fiber parts need to look good, and they also need to be durable; craftsmanship is the name of the game in Sant’Agata. Consequently, the process of manufacturing even a basic component like a piece of trim is highly meticulous. Lamborghini explains it takes roughly a year before new workers are allowed to make carbon fiber parts on their own.

While our part hardens, we head over to a different part of the factory to learn about what insiders proudly refer to as carbon fiber 2.0.

The carbon fiber of the future
Not one to rest on its laurels, Lamborghini has developed a brand-new type of carbon fiber named Forged Composites. The name might not sound familiar, but you’ve seen it before if you’ve been keeping up with Lamborghini news. It’s that cool, high tech-looking material prominently featured on the Sesto Elemento and, more recently, on the Huracán Performante. It was designed in-house, and the company’s brightest minds agree it’s the carbon fiber of the future.

Designers love working with Forged Composites because it gives parts a unique look, and it can be shaped in ways that regular carbon fiber can’t.

On paper, Forged Composites is similar to the carbon fiber we’ve gotten used to seeing in cars. Rolls of it are stored in a freezer until they need to be turned into parts. They’re also cut with a knife, and carefully placed in a mold layer by layer. However, the other tasks are entirely automated.

Again, we’re instructed to make a small, wavy part used by members of the R&D staff for testing. This time, there is no need to poke, nudge, or force the material into a mold; a vertical press handles that part of the process with a single powerful strike. And, instead of sitting in an oven for hours, for fifteen minutes the part is placed in a purpose-built machine that heats it up to 275 degrees Fahrenheit while applying over 1,100 PSI of pressure.

Right now, Forged Composites is used to make components like spoilers, bumpers, interior trim parts, and shift paddles. It will gradually replace carbon fiber on the assembly line, meaning it’s not too far-fetched to imagine one day Lamborghini will make a full monocoque out of Forged Composites. When it reaches that point, the brand will be able to increase production of its super sports cars as it sees fit.

“Forged Composites provides the right balance between weight reduction, performance, and safety in our super sports cars,” Masini told us.

Lamborghini designers love working with Forged Composites because it gives parts a unique look, and it can be shaped in ways that regular carbon fiber can’t. Engineers praise the material because it’s highly resistant to damage, and it’s easy to drill or trim. That’s why everyone at the factory refers to it as carbon fiber 2.0, and we’re going to be seeing much more of it in the coming years.
Digital Trends
7 June

Related Images